This is a use built-in-abstract functions problem. At first glance the result may look "fractal-y" but it is not. Your solution MUST NOT BE RECURSIVE and it MUST CALL ONE OR MORE BUILT-IN ABSTRACT FUNCTIONS.

Consider these 4 rectangles, for the first the widthxheight is 25×100, for the last it is 100×25. Since there are $\mathrm{n}=4$ rectangles, there are $\mathrm{n}-1=3$ jumps between them. Then, at each jump:
the width changes by (100-25)/3 $=25$
the height changes by $(25-100) / 3=-25$

You must design a function called rectangles that consumes 4 arguments: the number of rectangles to produce, the starting width (which is the ending height), the starting height (which is the ending width), and a color. It should produce n rectangles varying in size as described above, and then overlay those rectangles. You may assume that the number of rectangles is greater than or equal to 2 .

Here are two examples of what your function must produce:

(rectangles 425100 "blue")

(rectangles 920100 "red")

